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1. Introduction

Supersymmetric Wilson loops play an important role in AdS5/CFT4 correspondence [1 –

4]. On the field theory side, the calculation of the expectation values of half-BPS circular

Wilson loops could be reduced to the corresponding calculation in a zero-dimensional ma-

trix model [5]. The reduction to the matrix model relies on the fact that the perturbative

contributions to the expectation value are believed to be only from the rainbow graphs in

Feynman gauge [5] and this is confirmed by using the conformal transformation which links

the straight Wilson line and the circular Wilson loop [6]. It is remarkable that the compu-

tations using the matrix model give us the results to all orders of g2
YMN and to all orders

of 1/N . The dependence on 1/N indicates that in order to have a good dual description of

these BPS Wilson loops, one has to go beyond the free string limit and consider the string

interaction on the AdS5 side.

The original AdS5/CFT4 dictionary tells us that the dual description of the Wilson

loops in AdS5 should be the fundamental strings whose worldsheet boundaries are just

the paths used to define the Wilson loops in N = 4 Super-Yang-Mills theory [7, 8]. The

on-shell classical actions of the strings give the expectation values of the Wilson loops,
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after correctly including the boundary terms [9]. However, the field theory result indi-

cates that this should not be the full story and one should go beyond the free string limit.

Later on, people found that a better description for the half-BPS Wilson loop in high rank

representation of gauge group is using D3-brane and/or D5-brane configurations [10 – 13].

The D3-brane configuration gives a good description for the Wilson loops in the symmetric

representation, while the D5-brane gives a good description for the ones in the antisym-

metric representation. The original string picture is a good description only for the Wilson

loops in the fundamental representation or low dimensional representations. The D-brane

description of the Wilson loops in high dimensional representations can be understood as

dielectric effect [14, 15]: due to the interaction among many coincide fundamental strings

in the self-dual RR background, the strings blow up to higher dimensional D-branes. The

expectation values of the Wilson loops can be computed from the action of the classical

D-brane solutions in the large N limit, appropriately taken into account of the boundary

terms. The computations using D-branes successfully reproduce the all-genus results from

matrix model calculation [10, 11]. Furthermore D3-brane description of some 1/4-BPS

Wilson loops was given in [16] and the D-brane description of 1/2-BPS Wilson-’t Hooft

operators was given in [17]. Some further studies of higher rank Wilson loops using matrix

model can be found in [18, 19].

Another interesting issue on Wilson loops is to calculate their OPE. When we probe

the Wilson loop from a distance much larger than the size of the loop, this Wilson loop

operator can be expanded as a linear combination of local operators. When the local op-

erator is a chiral primary operator, the OPE coefficient can be computed either from the

correlation function of two Wilson loops or from the correlation of the Wilson loop with

this operator [20]. According to AdS/CFT correspondence, in the large N and large g2
YMN

limit this OPE coefficient can be computed from the coupling to the string worldsheet

corresponding to the Wilson loop of the supergravity mode corresponding to the chiral pri-

mary operator [20]. When the Wilson loop operator is in high dimensional representation,

the OPE coefficients can be computed from the coupling to the corresponding D-branes of

the supergravity modes [21].

Motivated by the success in the Wilson loop case, we would like to consider its cousin

in six-dimensional field theory in the framework of AdS7/CFT6 correspondence. Here

CFT6 is a six-dimensional superconformal field theory with (2, 0)-supersymmetries. Its

field content is of a tensor multiplet, including a 2-form Bµν , four fermions and five scalars;

the field strength of this 2-form is (anti)-self-dual. The strong version of the AdS7/CFT6

correspondence claims that this field theory is dual to the M-theory on the background

AdS7 × S4. This correspondence was obtained by considering N coinciding M5-branes in

M-theory. The low energy limit of the worldvolume theory is the above six-dimensional

AN−1, (2, 0) superconformal field theory [22, 23]. The near horizon limit of the supergravity

solution corresponding to these M5-branes will give AdS7 × S4 background with 4-form

flux. Similar to the AdS5/CFT4 case, this near horizon limit led Maldacena to propose

the above correspondence [1].1 Unfortunately, unlike the well-studied AdS5/CFT4 case,

1In [24], this correspondence was used to study the nonsupersymmtric QCD in four dimensions.
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the AdS7/CFT6 correspondence is poorly investigated, although its study could be essen-

tial for us to understand M-theory. The main obstacle is our ignorance of the mysterious

superconformal field theory. Due to the existence of self-dual chiral 2-form, there is no

lagrangian formulation of the theory, even though the chiral theory is still a local inter-

acting field theory [25]. The theory has been suggested to be described by DLCQ matrix

theory [26, 27]. In any sense, it has not been well understood. The AdS/CFT correspon-

dence supplies a new tool to probe this nontrivial six-dimensional field theory. The weak

version of the correspondence says that the large N limit of the (2, 0) field theory is dual

to 11D supergravity on AdS7×S4 [1]. The chiral primary operators and the corresponding

supergravity modes in this case were studied in [28]. Some correlation functions of local

operators were computed in [29]. These local operators were also studied using M5-brane

action [30].

In this six-dimensional superconformal field theory, the natural cousin of Wilson loop

operator is Wilson surface operator, a non-local operator of dimension two. This operator

could be formally defined as [31]

W0(Σ) = exp i

∫

Σ
B+. (1.1)

Here Σ is a two-dimensional surface. From AdS/CFT correspondence, the Wilson surface

operator should correspond to a membrane ending on the boundary of AdS space [8, 20].

Inspired by the D-brane description of Wilson loops in higher dimensional representations,

M5-brane description of the half-BPS Wilson surface operators in higher dimensional rep-

resentations were studied in details in [32].2 The corresponding M5-brane solutions of the

covariant equations of motion have been found. Both the straight Wilson surfaces and

the spherical Wilson surfaces were studied in this framework. For each case, two kinds of

solution were discovered. Both of them have worldvolume of topology AdS3 × S3. The

AdS3 part is always in AdS7, while the S3 part can be either in AdS7 or in S4. Analogizing

the D-brane description of the Wilson loops, we expect the first case describe the Wilson

surface in the symmetric representation, while the second solution describe the Wilson

surface in the anti-symmetric representation. The expectation value of the Wilson surface

should be given by the action of the membrane or the M5-brane. Both actions are diver-

gent [20, 32]. For the straight Wilson surface, there is only quadratic divergence, but for

the spherical Wilson surface, there are both quadratic and logarithmic divergences. The

logarithmic divergence comes from conformal anomaly of the surface operator [35]. The

existence of logarithmic divergence indicates that the expectation value of Wilson surface

may not be well-defined. Despite of this fact, the OPE coefficients of the Wilson surface

operators are still well-defined. In [29], the OPE coefficients of the chiral primary operators

are computed using the membrane solution found in [20]. The strategy is similar to the

Wilson loop case: one may treat the membrane as the source for the supergravity fields in

the bulk. The OPE coefficients could be read off from the coupling to the membrane of

the bulk supergravity modes corresponding to the chiral primary operators.

2Similar brane configurations for straight Wilson surface are discussed in [33] in Pasti-Sorokin-Tonin

(PST) formalism as well. The self-dual string soliton in AdS4 × S7 spacetime is discussed in [33, 34].
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The main subject of this paper is to compute the OPE coefficients for the Wilson sur-

face operator in higher dimensional representation using the M5-brane solutions mentioned

above. We compute these OPE coefficients from the correlation functions of the Wilson

surface with the chiral primary operators. Instead of taking the membrane as source, we

take the M5-brane as the source and study its response to the bulk gravity modes. Unlike

the cases of D-brane and M2-brane, the dynamics of M5-brane is much more subtler. Var-

ious actions of M5-branes are given in [36]–[41]. In this paper we will use the non-chiral

action in [41] to compute the OPE coefficients. The virtue of this action is that we need

not to introduce any auxiliary fields.

The paper is organized as follows. In section 2, we review the computations of the

OPE coefficients using membrane solution. Section 3 is devoted to a very brief review of

the non-chiral action of M5-brane. The computations using M5-brane solution is present

in the following two sections. Section 4 is for the symmetric case and section 5 is for the

anti-symmetric case. We end with the conclusion and discussions. We put the technical

details about the variation of dual six-form gauge potential δC6 in the appendix.

2. Review of the OPE of the Wilson surface in the fundamental presen-

tation

In this paper, we only consider the spherical Wilson surface operators. When we probe

the Wilson surface from a distance quite larger than its radius r, the operator product

expansion of the Wilson surface operators could be:

W (S) = 〈W (S)〉



1 +
∑

i,n

cn
i r∆n

i On
i



 , (2.1)

where On
i are operators with conformal weights ∆n

i . Here we use O0
i to denote the i-th

primary field and On
i for n > 0 to denote its conformal descendants. The OPE coefficients

of the chiral primary operator O0
i can be obtained from the r/L expansion of the correlation

function of the Wilson surface with this chiral primary operator,

〈W (S)O0
i 〉

〈W (S)〉 = c0
i

r∆0
i

L2∆0
i

+
∑

m>0

cm
i r∆m

i 〈Om
i O0

i 〉, (2.2)

where L is the distance from the Wilson surface to the local operator, and we have assume

that the local operators have been normalized.

These operators should be bosonic and SN symmetric, since they should have the same

symmetry property of the Wilson surface. Based on the experience from the supersym-

metric Wilson loops in N = 4 SYM, the half-BPS Wilson surface should also couple to

the five scalars. This coupling is determined by a vector θ̃I(s) in S4 [20]. We consider

the case when θ̃I(s) = θ̃I is a constant, i.e. a fixed point in S4. Then the R-symmetry

group is broken from SO(5) to SO(4). The local operators which appear in the OPE of the

Wilson surface should also be in the representation of SO(5) whose decomposition includes

singlet in SO(4). In this paper, we will compute the OPE coefficient of the operator O∆ in
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the rank k symmetric, traceless representation of SO(5). This operator satisfy the above

constraints and is a chiral primary operator of dimension ∆ = 2k [27]. The dimension of

this operator is protected by supersymmetries.

2.1 Review of the corresponding supergravity modes

In the following, we would like to review the supergravity modes corresponding to this

chiral primary operators. To do this, we would like to first review the AdS7 × S4 solution

of 11d supergravity. This solution is maximally supersymmetric.

The bosonic equations of motion of 11d supergravity are:3

Rmn =
1

2 × 3!
HmpqrH

pqr
n − 1

6 × 4!
gmnHpqrsH

pqrs, (2.3)

0 = ∂m

(√−gHmnpq
)

+
1

2 × (4!)2
ǫm1···m8npqHm1···m4

Hm5···m8
. (2.4)

And the metric and background 4-form flux of AdS7 × S4 are

ds2 =
1

y2
(dy2 − dt2 + dx2 + dr2 + r2dΩ2

3) +
1

4
dΩ2

4

H4 =
3

8
sin3 ζ1 sin2 ζ2 sin ζ3dζ1 ∧ dζ2 ∧ dζ3 ∧ dζ4 (2.5)

where dΩ2
3 is the metric of unit S3 and dΩ2

4 is the metric of unit S4. The 4-form field

strength fills in S4, and ζi (i = 1, 2, 3, 4) are the angular coordinates in S4. We have

rescaled the radius of AdS7 to be 1, then the radius of S4 is 1/2. From the AdS7/CFT6

duality, we know that

lp = (8πN)−
1
3 , (2.6)

where lp is the Planck constant in eleven dimension. The 4-form field strength H4 and its

Hodge dual 7-form field strength H7 are related to the corresponding gauge potentials C3

and C6 by

H4 = dC3,

H7 = dC6 +
1

2
C3 ∧ H4. (2.7)

Now we consider the fluctuation around the above background to get the states of 11d

supergravity in this background [42 – 44]. We can decompose the fluctuated metric as

Gmn = gmn + hmn, (2.8)

where gmn is the background metric, hmn is the fluctuations. The fluctuation of the three

form gauge potential is

δCmnp = amnp (2.9)

3We use the following notation: m, n, . . . refer to the coordinate indices of AdS7 × S4, µ, ν, . . . refer to

the coordinate indices of the AdS7 part, α, β, . . . refer to ones of the S4 part, and the underline indices refer

to target space ones.
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We first decompose hαβ into the trace part and the traceless part:

hαβ = h(αβ) +
1

4
h2gαβ. (2.10)

Then we decompose hµν as

hµν = h′
(µν) +

(

h′

7
− h2

5

)

gµν . (2.11)

Here mn indicates that we take the symmetric traceless part.

In the gauge defined by

∇αh(αβ) = ∇αhαµ = ∇αaαmn = 0, (2.12)

h′, h2, h(αβ), h
′
(µν) and am1m2m3

have the following expansion:

h′ =
∑

I

h′IY I , h2 =
∑

I

hI
2Y

I ,

h(αβ) =
∑

I

φIY I
(αβ), h′

(µν) =
∑

I

h′I
(µν)Y

I , (2.13)

and

aαβγ =
∑

I

6
√

2ǫαβγδb
I∇δY I . (2.14)

Here Y I and Y I
(αβ) are scalar and rank 2, symmetric traceless tensor harmonics on

four-sphere with radius 1/2, respectively. They satisfy the following equations

∇α∇αY I = −4k(k + 3)Y I , (2.15)

and

∇α∇αY I
(βγ) = −4[k(k + 3) − 2]Y I

(βγ), (2.16)

respectively.4 The index I is the abbreviation of (l4, . . . , l1) which satisfy

l4 ≡ k ≥ l3 ≥ l2 ≥ |l1|. (2.17)

Using the above expansions, we can obtain the linearized equations of motion which

we will not repeat here. The modes h2 and b satisfy a set of coupled equations of motion.

The mass eighenvectors and eighenvalues are

sI =
k

2k + 3

[

hI
2 + 32

√
2(k + 3)bI

]

, m2
s = 4k(k − 3), k ≥ 2, (2.18)

tI =
k + 3

2k + 3

[

hI
2 − 32

√
2kbI

]

, m2
t = 4(k + 3)(k + 6), k ≥ 0. (2.19)

sI transforms in the same representation of the R-symmetry group SO(5) as O∆, and it is

the supergravity mode corresponding to O∆ [28].

4We use the same normalization of the harmonic functions as in [29].
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Since we are only interested in the OPE coefficients of O∆, we can set the other modes

to be zero. From tI = 0, we get

hI
2 = 32

√
2kbI , (2.20)

so

sI = 32
√

2kbI = hI
2. (2.21)

Using the results in [29], we can express the fluctuation of the background in terms of

sI as:

hI
αβ =

1

4
gαβsI , (2.22)

hI
µν =

3

16k(2k + 1)
∇(µ∇ν)s

I − 1

14
gµνs

I , (2.23)

and

δCαβγ =
∑

I

3

16k
ǫαβγδs

I∇δY I . (2.24)

2.2 Review of the computations of the OPE coefficients

In this subsection we will review the membrane solution corresponding to the Wilson surface

in the fundamental representation in [20] and the computations of the OPE coefficients

using this solution [29].

The membrane solution can be described more conveniently in the Euclidean version

of AdS7 space and using the Poincaré coordinates. In this coordinate system, the metric

of the AdS7 space is

ds2 =
1

y2

(

dy2 +
6

∑

i=1

dx2
i

)

. (2.25)

Consider a spherical Wilson surface with radius r described by

x2
1 + x2

2 + x2
3 = r2, (2.26)

in the boundary of AdS7. The membrane solution corresponding to this Wilson surface

can be parametrized as following:

x1 =
√

r2 − y2 cos θ,

x2 =
√

r2 − y2 sin θ cos ψ,

x3 =
√

r2 − y2 sin θ sin ψ, (2.27)

where 0 ≤ y ≤ r, 0 ≤ θ ≤ π, 0 ≤ ψ ≤ 2π.

To compute the OPE coefficient from this membrane solutions, we need to use the

action of the M2-brane. The bosonic part of this action is [45]

SM2 = T2

∫

(dVol − C3), (2.28)

where T2 is the tension of M2-brane:

T2 =
1

(2π)2l3p
=

2N

π
, (2.29)

– 7 –
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and C3 is the pullback of the bulk 3-form gauge potential to the worldvolume of the

membrane.5 Since the worldvolume of the membrane is completely embedded in the AdS7

part of the background, so the pullback of δC3 to the membrane worldvolume is zero. Then

the only contribution is from the Nambu-Goto part of the action:

δSM2 =
1

2
T2

∫

dVolgmnhmn. (2.30)

After we compute the fluctuation of the action due to the supergravity modes, we write

sI as sI(~x, y) =
∫

d6~x′G∆(~x′; ~x, y)sI
0(~x

′). Here

G∆(~x′; ~x, y) = c

(

y

y2 + |~x − ~x′|2
)∆

, (2.31)

is the bulk-to-boundary propagator and c is the following constant:

c =
82+k(2k − 3)(2k − 1)(2k + 1)Γ(k + 3/2)

9π1/2N3Γ(k)
. (2.32)

Then the correlation function we needed to compute is:

〈W (S, L)O∆(0)〉
〈W (S, L)〉 ∼ − 1

N I

δSM2

δsI
0(~x)

. (2.33)

Here

N I = −23k/2+3 (2k − 3)(2k + 1)

3π1/4N3/2

√

(2k − 1)Γ(k + 1/2)

Γ(k)
(2.34)

is used to set the normalization of the operator and this constant is fixed by requiring the

coefficient of the 2-point function to be unit.

Since we only need to compute this function to the first order of r/L, we can use the

following approximation for the bulk-to-boundary propagator [20]:

G∆(~x′; ~x, y) ≃ c
y∆

L2∆
. (2.35)

From eq. (2.31), we find that to the first order of r/L, we have the following approximations:

∂µsI ≃ δy
µ

∆

y
sI , ∂µ∂νs

I ≃ δy
µδy

ν

∆(∆ − 1)

y2
sI , (2.36)

By using this and

Γy
µν = ygµν − 2

y
δy
µδy

ν (2.37)

in Poincaré coordinate, we get

hI
µν ≃ −1

8
gµνs

I +
3

8
δy
µδy

ν

1

y2
sI . (2.38)

5In this paper, we use the underline indices to denote the target space indices. We also use the underline

to denote the pullback of bulk gauge potential or field strength to the worldvolume of M2-brane or M5-brane.

We hope that this will not produce confusion.
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From this, we have

δSM2 = −3T2

16

∫

dVol
y2

r2

∑

I

sIY I(θ̃). (2.39)

By using eq. (2.33), (2.32), (2.34), (2.29), we get

〈W (S, L)O∆(0)〉
〈W (S, L)〉 ∼ −2(3k+1)/2π1/4

√

Γ(k)

NΓ(k − 1
2 )

r∆

L2∆
Y I(θ̃). (2.40)

So the OPE coefficients are6

cfumd.,∆ = −2(3∆+2)/4π1/4

√

Γ(∆/2)

NΓ((∆ − 1)/2)
. (2.41)

3. The non-chiral action of M5-brane

Compared to D-branes, the action of M5-brane is more involved. Various actions of M5-

branes were given in [36]–[41]. Different choice of action gives equivalent equations of

motion [37, 41]. In this paper we will use the non-chiral action in [41] to compute the OPE

coefficients. There is a 3-form field strength H3 on the worldvolume of the M5-brane. This

field strength is related to a 2-form potential A2 by

H3 = dA2 − C3, (3.1)

so H3 satisfies the following Bianchi identity:

dH3 = −H4 (3.2)

Here C3 and H4 are the pull-back of target space 3-form potential and 4-form field strength,

respectively.

The non-chiral action is given by

S = SM5 − SWZ = T5

∫

(
1

2
⋆ K − Z6), (3.3)

where

K = 2

√

1 +
1

12
H2 +

1

288
(H2)2 − 1

96
HabcHbcdHdefHefa, (3.4)

Z6 = C6 −
1

2
C3 ∧ H3, (3.5)

and T5 is the tension of the M5-brane:

T5 =
1

(2π)5l6p
=

2N2

π3
. (3.6)

Here C6 is the pull-back of target space 6-form potential. The equations of motion are

obtained from the variation of the action with respect to the embedding zm and the gauge

6Notice that Y I is not included in the OPE coefficients.
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potential A2. The equation of motion for 2-form potential is equivalent to the Bianchi

identity. In addition, one have to impose the following non-linear self-duality condition [41]

∗H3 =
∂K
∂H3

, (3.7)

by hand.

In the following two sections we will study the OPE of the Wilson surface operators

using this non-chiral action. For doing this, we need to compute the variations of the action

with respect to the above fluctuations of the background fields reviewed in subsection 2.1.

Since we only need to compute the fluctuation to the linear order and the equations of

motion are obtained from the variation of the action with respect to zm and A2, we can

set the variations of zm and A2 to be zero. Then from eq. (3.1) we get δH3 = −δC3.

4. OPE of the Wilson surface in the symmetric representation

In this section we will study the OPE of the Wilson surface operator in the symmetric

representation by using the M5-brane solutions in [32]. We would like to compute the OPE

coefficients of O∆ by compute the correlation functions of the Wilson surface operator with

O∆. According to the AdS/CFT correspondence, we need to study the coupling to this

M5-brane of the corresponding supergravity modes sI .

4.1 Review of the M5-brane solution

First we would like to review the M5-brane solution corresponding to the spherical Wilson

surface operator in the symmetric representation. As in [10], it is more convenient to make

a Wick rotation in the AdS7 space and choose the coordinates such that the metric take

the following form:

ds2 =
1

y2
(dy2 + dr2

1 + r2
1(dα2 + sin2 αdβ2) + dr2

2 + r2
2(dγ2 + sin2 γdδ2)), (4.1)

The Wilson surface will be placed at r1 = r and r2 = 0. Let us change the coordinates

(r1, r2, y) to (ρ, η, θ) by the following transformation:

r1 =
r cos η

cosh ρ − sinh ρ cos θ
, r2 =

r sinh ρ sin θ

cosh ρ − sinh ρ cos θ
, y =

r sin η

cosh ρ − sinh ρ cos θ
, (4.2)

then we can rewrite the AdS7 metric as

ds2 =
1

sin2 η

(

dη2 + cos2 η(dα2 + sin2 αdβ2) + dρ2

+ sinh2 ρ(dθ2 + sin2 θdγ2 + sin2 θ sin2 γdδ2)
)

. (4.3)

Here, the coordinates take the range ρ ∈ [0,∞), θ, α, γ ∈ [0, π), β, δ ∈ [0, 2π), η ∈ [0, π/2).

The worldvolume of the M5-brane has topology AdS3×S3 and is completely embedded

into the AdS7 part of the background geometry. We take (η, α, β, θ, γ, δ) as the worldvolume
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coordinates of M5-brane and assume that ρ be only the function of η. For the solution

found in [32], η and ρ satisfy the following relation:

sinh ρ = κ sin η (4.4)

so the induced metric of M5-brane worldvolume is

ds2 =
1

sin2 η

(

1 + κ2

1 + κ2 sin2 η
dη2 + cos2 η(dα2 + sin2 αdβ2)

)

+κ2
(

dθ2 + sin2 θdγ2 + sin2 θ sin2 γdδ2
)

. (4.5)

The field strength H3 on the worldvolume is

H3 = 2a

(

i

(1 + a2) sin3 η

√

1 + κ2

1 + κ2 sin2 η
cos2 η sin αdη ∧ dα ∧ dβ

+
1

1 − a2
κ3 sin2 θ sin γdθ ∧ dγ ∧ dδ

)

. (4.6)

The equations of motion require that κ and a should satisfy

κ√
1 + κ2

= −1 − a2

1 + a2
(4.7)

4.2 The computations of the OPE coefficients

To compute the coupling to the M5-brane of these supergravity modes, we should compute

the variations of the action with respect to the above fluctuation of the background.

First we notice that after Wick rotation, the non-chiral action for the M5-branes take

the form:

S = SM5 − SCS = T5

∫ (

1

2
∗ K + iZ6

)

. (4.8)

We decompose the fluctuation of the background metric into two parts:

hµν = h(1)
µν + h(2)

µν , (4.9)

where

h
(1)
αβ =

1

4
gαβs, h(1)

µν = −1

8
gµνs. (4.10)

h
(2)
αβ = 0, h(2)

µν =
3

8
δy
µδy

ν

1

y2
s. (4.11)

Here s =
∑

I sIY I .

First we compute the variation of the action with respect to the first part of the

fluctuation of the metric. Let us define

δ(i) = h(i)
mn

δ

δgmn
, i = 1, 2. (4.12)
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From equation (4.10), we get the first part of the fluctuation of the induced metric as

h(1)
µν = −1

8
gµνs, (4.13)

Furthermore, we have

δ(1)gµν =
1

8
gµνs. (4.14)

Since the M5-brane is completely embedded in the AdS7, we have

δ(1)
√

detgµν =
1

2

√

detgµνgµνh(1)
µν

= −3

8
s
√

detgµν . (4.15)

From

H2 = 6(HηαβHηαβ + HθγδH
θγδ) = 6(gηηgααgββH2

ηαβ + gθθgγγgδδH2
θγδ), (4.16)

we get

δ(1)H2 = 6 · 3 · 1

8
s(HηαβHηαβ + HθγδH

θγδ) =
3

8
sH2. (4.17)

Similarly, by using

HmnpH
npqHqrsH

rsm = 12((HηαβHηαβ)2 + (HθγδH
θγδ)2) (4.18)

we get

δ(1)(HmnpH
npqHqrsH

rsm) =
3

4
sHmnpH

npqHqrsH
rsm (4.19)

Since

K = 2

√

1 +
1

12
H2 +

1

288
(H2)2 − 1

96
HmnpHnpqHqrsHrsm, (4.20)

we have

δ(1)K = 0. (4.21)

We note that this result is valid for any of the M5-brane solutions completely embedded

in the AdS7 space. From the above results we get

δ(1)
(

√

detgµνK
)

= −3

8
s
√

detgµνK. (4.22)

Then

δ(1)SM5 = −T5

2

∫

3

8
s
√

detgµνKdηdαdβdθdγdδ. (4.23)

Now we turn to compute the variation of the action with respect to the second part of

the fluctuation of the background metric.

In Pioncarè coordinate, we have

h(2)
µν =

3

8
δy
µδy

ν

1

y2
s. (4.24)
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In the new coordinate system, we have,

h
(2)
µ̃ν̃ =

3

8

∂y

∂X µ̃

∂y

∂X µ̃

1

y2
s, (4.25)

which gives us

h
(2)
θθ = h

(2)
θθ =

3

8
s

(

sinh ρ sin θ

cosh ρ − sinh ρ cos θ

)2

, (4.26)

and

h(2)
ηη =

3

8
s

(

cos η

sin η
− κ cos η

cosh ρ

sinh ρ − cosh ρ cos θ

cosh ρ − sinh ρ cos θ

)2

. (4.27)

Similar to the previous computations, we have

δ(2)
√

detgµν =
1

2

√

detgµνgµνh(2)
µν

=
1

2

√

detgµν

(

gηηh(2)
ηη + gθθh

(2)
θθ

)

, (4.28)

δ(2)H2 = 6
(

δ(2)gηηHηαβH αβ
η + δ(2)gθθHθγδH

γδ
θ

)

= −6
(

gηηh(2)
ηη HηαβHηαβ + gθθh

(2)
θθ HθγδH

θγδ
)

, (4.29)

and

δ(2)(HmnpH
npqHqrsH

rsm) = 12

(

2
(

HηαβHηαβ
)2 (

−gηηh(2)
ηη

)

+2
(

HθγδH
θγδ

)2 (

−gθθh
(2)
θθ

)

)

. (4.30)

Taking all these into account, we get

δ(2)SM5 =
T5

2

∫

√

detgµν

{

h(2)
ηη gηη

(K
2
− 2

KHηαβHηαβ

(

1

2
+

1

24
H2 − 1

4
HηαβHηαβ

))

+(η, α, β → θ, γ, δ)

}

dηdαdβdθdγdδ

= −T5

2

∫

dηdαdβdθdγdδ
3

8
s

cos2 η + sinh2 ρ sin2 θ

(cosh ρ − sinh ρ cos θ)2
× κ2 cos2 η sin α sin2 θ sin γ

sin3 η cosh ρ
,

(4.31)

where κ = 1−a2

2|a| and the explicit value of H3 have been used.

Now we begin to discuss the contributions from the fluctuation of the four-form flux.

Recall that δH3 = −δC3, since δC3 only have components in S4, so δH3 = 0. Then the

contributions only come from the Chern-Simions part of the action. Since δ(C3 ∧H3) = 0,

the only contribution is from δC6.

The computations of δC6 is put in the appendix, the result is

δC6 = −3

8
C6

∑

I

sIY I . (4.32)
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Therefore

δSCS = −iT5

∫

δC6 = −iT5

∫

C6

(

−3

8
s

)

. (4.33)

Using this result and eq. (4.23), we get

δ(1)SM5 − δSCS = T5

∫ (

1

2
⋆ K + iC6

)(

−3

8
s

)

(4.34)

The 6-form gauge potential C6 is of the form

C6 = i
cos3 η sinh3 ρ sin2 θ sin α sin γ

sin6 η
dρ ∧ dα ∧ dβ ∧ dθ ∧ dγ ∧ dδ

−i
cos2 η sinh2 ρ sin3 θ sinα sin γ

sin5 η(cosh ρ − sinh ρ cos θ)
dη ∧ dα ∧ dβ ∧ dρ ∧ dγ ∧ dδ

+i
cos2 η sinh3 ρ sin2 θ sinα sin γ(sinh ρ − cos θ cosh ρ)

sin5 η(cosh ρ − sinh ρ cos θ)

dη ∧ dα ∧ dβ ∧ dθ ∧ dγ ∧ dδ. (4.35)

On the M5-brane worldvolume,

C6 = i
κ3 cos2 η sin2 θ sin α sin γ

sin3 η cosh ρ(cosh ρ − sinh ρ cos θ)
(κ cosh ρ − (1 + κ2) cos θ sin η)

dη ∧ dα ∧ dβ ∧ dθ ∧ dγ ∧ dδ (4.36)

After some calculations, we get

δ(1)SM5 − δSCS = T5

∫
(

−3

8
s

)

κ2 cos2 η sin2 θ sin α sin γ

2 sin3 η cosh ρ

cosh ρ + sinh ρ cos θ

cosh ρ − sinh ρ cos θ

dηdαdβdθdγdδ (4.37)

From this result and eq. (4.31), we get

δS = δ(1)SM5 + δ(2)SM5 − δSCS (4.38)

= T5

∫

3

8
s
κ2 cos2 η sin2 θ sinα sin γ

2 sin3 η cosh ρ

sin2 η − 2 sinh2 ρ sin2 θ − 2

(cosh ρ − sinh ρ cos θ)2
dηdαdβdθdγdδ

Having obtained the variation of the action with respect to the fluctuation of the

background fields, we can compute the correlation function of the Wilson surface operator

in the symmetric representation with the chiral primary operators.

Now, we write sI as sI(~x, y) =
∫

d6~x′G∆(~x′; ~x, y)sI
0(~x

′),

〈W (S, L)O∆(0)〉
〈W (S, L)〉 ∼ − 1

N I

δS

δsI
0(~x)

= − T5

N I

∫

3

8
c
r∆κ1−∆ sinh∆ ρ cos η sin2 θ sin α sin γ

2L2∆ sin3 η(cosh ρ − sinh ρ cos θ)∆+2

×(sin2 η − 2 sinh2 ρ sin2 θ − 2)Y I(θ̃)dρdαdβdθdγdδ. (4.39)

By using
∫ π

0
dα sin α

∫ 2π

0
dβ =

∫ π

0
dγ sin γ

∫ 2π

0
dδ = 4π (4.40)
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and

sin η = κ−1 sinh ρ, cos η =

√

κ2 − sinh2 ρ

κ
, (4.41)

we get

〈W (S, L)O∆(0)〉
〈W (S, L)〉 ∼ − c

N I
· (4π)2

3

8

r∆

L2∆
T5

∫ sinh−1 κ

0

1

2

√

κ2 − sinh2 ρκ3−∆ sinh∆−3 ρdρ

∫ π

0
dθ

sin2 θ(−2 + sinh2 ρ(κ−2 − 2 sin2 θ))

(cosh ρ − sinh ρ cos θ)2+∆
Y I(θ̃). (4.42)

So the OPE coefficient is

cS,∆ = 23k/2+4

(

k +
1

2

)

π−5/4N1/2

√

(2k − 1)Γ(k + 1/2)

Γ(k)
∫ sinh−1 κ

0

√

κ2 − sinh2 ρκ3−∆ sinh∆−3 ρdρ

∫ π

0
dθ

sin2 θ(−2 + sinh2 ρ(κ−2 − 2 sin2 θ))

(cosh ρ − sinh ρ cos θ)2+∆
. (4.43)

We can perform the integral over θ and get:

cS,∆ = 23k/2+2

(

k +
1

2

)

π−1/4N1/2

√

(2k − 1)Γ(k + 1/2)

Γ(k)
∫ sinh−1 κ

0
dρ

√

κ2 − sinh2 ρκ3−∆ sinh∆−3 ρ

[2(κ−2 sinh2 ρ − 2) exp[−(2 + ∆)ρ] 2F1(3/2, 2 + ∆, 3, 1 − e−2ρ)

−3 sinh2 ρ exp[−(2 + ∆)ρ] 2F1(5/2, 2 + ∆, 5, 1 − e−2ρ)]. (4.44)

It would be interesting to compare our results with the OPE coefficients of Wilson

surface operators in the fundamental representation computed using the membranes [29].

To do this, we should take the limit of κ → 0 because in this limit the S3 part of the

worldvolume shrink.

In this limit, we can do the integral by substitution: we define t by using

ρ =
(

sinh−1 κ
)

t, 0 ≤ t ≤ 1 (4.45)

then as κ → 0,

sinh−1 κ ∼ κ, ρ ∼ κt, cosh ρ ∼ 1, sinh ρ ∼ κt, dρ ∼ κdt, (4.46)

then

cS,∆ = − 1

N I
· 3π2cT5κ

2

∫ 1

0
dtt∆−3(t2 − 2)

√

1 − t2
∫ π

0
dθ sin2 θ

= −3π3

2

c

N I

a∆

L2∆
T5κ

2

∫ 1

0
dt

√

1 − t2(t∆−1 − 2t∆−3). (4.47)
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Using

∫ 1

0
dt

√

1 − t2(t∆−1 − 2t∆−3) =

√
π

4

(

Γ(∆
2 )

Γ(∆+3
2 )

− 2
Γ(∆−2

2 )

Γ(∆+1
2 )

)

= −
√

π

4

∆ + 4

∆ + 1

Γ(∆−2
2 )

Γ(∆+1
2 )

, (4.48)

we get

cS,∆ = T5
c

N I

3π7/2

8
κ2 2k + 4

2k + 1

Γ(k − 1)

Γ(k + 1
2)

= −2(3k+3)/2N1/2π1/4 k + 2

k − 1

√

Γ(k)

Γ(k − 1/2)
κ2, (4.49)

in the κ → 0 limit. Now we express this result in terms of QM , the magnetic charge of the

string soliton solution [32]. For this solution, we have κ2 = QM/(8πN), So

cS,∆ = −QM2(3k−3)/2π−3/4 k + 2

k − 1

√

Γ(k)

NΓ(k − 1/2)
. (4.50)

We can see that in this limit the OPE coefficients is proportional to QM . Comparing

with the results eq. (2.41) obtained from membrane, we find that the k-dependence of the

OPE coefficient is different although the N -dependence is the same.

5. OPE of the Wilson surface in the antisymmetric representation

In this section we compute the OPE of the Wilson surface in the antisymmetric represen-

tation. As mentioned in the introduction, in this case, the worldvolume of the M5-brane

still has topology AdS3 × S3, where the S3 part (we sometimes call it S̃3) is in S4 instead

of AdS7. Some part of the calculations are similar to the previous section, while some new

issues will appear here.7

5.1 Review of the M5-brane solution

As in section 4, we first review the M5-brane solution corresponding to the spherical Wilson

surface operator in antisymmetric representation.

We begin from the Euclidean AdS7 whose metric has form (4.1). We further consider

the transformation

y = r cos δ, r1 = r sin δ. (5.1)

The coordinates of the AdS3 part of the M5-brane worldvolume can be chosen as δ, α, β.

Then the AdS3 part of the induced metric of the worldvolume is

ds2
ind, AdS3

=
1

cos2 δ
(dδ2 + sin2 δ(dα2 + sin2 αdβ2)). (5.2)

7In this section, we set the vector θ̃I mentioned in section 2 to be (1, 0, 0, 0) by a SOR(5) rotation. Then

the corresponding angular coordination ζ1 equals to zero.
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The coordinates of the S̃3 part can be chose to be ζ2, ζ3, ζ4 and we let ζ1 to be fixed at a

constant ζ0. Then the induced metric of this part is

ds2

ind, S̃3
=

1

4
sin2 ζ0

(

dζ2
2 + sin2 ζ2dζ2

3 + sin2 ζ2 sin2 ζ3dζ2
4

)

(5.3)

The field strength H3 on the worldvolume is

H3 = 2a

(

i
1

1 + a2

sin2 δ sin α

cos3 δ
dδ ∧ dα ∧ dβ

+
1

1 − a2

sin3 ζ0

8
sin2 ζ2 sin ζ3dζ2 ∧ dζ3 ∧ dζ4

)

. (5.4)

The equations of motion require a and ζ0 should satisfy

a =
±1 + sin ζ0

cos ζ0
. (5.5)

5.2 The computations of the OPE coefficients

After reviewing the M5-brane solution, we now compute the OPE coefficients of the Wil-

son surface operators using AdS7/CFT6 correspondence. As the computation for Wilson

surfaces in the symmetric representation, we should compute the variation of the M5-brane

action with respect to the fluctuation of the background fields reviewed in section 2.

For the variation with respect to the first part of the fluctuation of the metric, we have:

δ(1)
√

detgmn =
1

2

√

detgmn

(

gαβh
(1)
αβ + gµνh(1)

µν

)

=
1

2

√

detgmn

(

−3

8

∑

I

sIY I +
3

4

∑

I

sIY I

)

.

(5.6)

From

H2 = 6(HδαβHδαβ + H234H
234), (5.7)

and

HmnpH
npqHqrsH

rsm = 12 · ((HδαβHδαβ)2 + (H234H
234)2), (5.8)

we get

δ(1)H2 = 6

(

3

8

∑

I

sIY IHδαβHδαβ − 3

4

∑

I

sIY IH234H
234

)

, (5.9)

and

δ(1)(HmnpH
npqHqrsH

rsm)=12·
(

2 · 3

8

∑

I

sIY I · (HδαβHδαβ)2−2 · 3

4

∑

I

sIY I(H234H
234)2

)

.

(5.10)

So

δ(1)

(

1

12
H2 +

1

288
(H2)2 − 1

96
HmnpH

npqHqrsH
rsm

)

=
3

8

∑

I

sIY IHδαβHδαβ

(

1

2
+

1

24
H2 − 1

4
HδαβHδαβ

)

−3

4

∑

I

sIY IH234H
234

(

1

2
+

1

24
H2 − 1

4
H234H

234

)

. (5.11)
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From

K = 2

√

1 +
1

12
H2 +

1

288
(H2)2 − 1

96
HmnpHnpqHqrsHrsm, (5.12)

we have

δ(1)(K) =
2

Kδ(1)

(

1

12
H2 +

1

288
(H2)2 − 1

96
HmnpH

npqHqrsH
rsm

)

. (5.13)

Using this, we get

δ(1)
(

√

detgmnK
)

=
√

detgmn

[

−3

8

∑

I

sIY I

(K
2
− 2

KHδαβHδαβ

(

1

2
+

1

24
H2− 1

4
HδαβHδαβ

))

+
3

4

∑

I

sIY I

(K
2
− 2

KH234H
234

(

1

2
+

1

24
H2− 1

4
H234H

234

))

]

=
√

detgmn

(

−3

8

∑

I

sIY I

(

−1 + a2

1 − a2

)

+
3

4

∑

I

sIY I

(

−1 − a2

1 + a2

)

)

=
3

8

∑

I

sIY I
√

detgmn
−1 + 6a2 − a4

1 − a4
. (5.14)

Now y = r cos δ, so

h
(2)
δδ =

3

8
s

(

∂y

∂δ

)2 1

y2
=

3

8
s
sin2 δ

cos2 δ
. (5.15)

Similar to the computations for the Wilson surface operators in symmetric representation,

we have

δ(2)
(

√

detgmnK
)

=
√

detgmngδδh
(2)
δδ

(K
2
− 2

KHδαβHδαβ

(

1

2
+

1

24
H2 − 1

4
HδαβHδαβ

))

=
√

detgmn
3

8
s sin2 δ

a2 + 1

a2 − 1
(5.16)

So from eqs. (5.14) and (5.16), we get the contribution from the fluctuation of the

metric:

δg

(

√

detgmnK
)

=
√

detgmn
3

8

∑

I

sIY I

(−1 + 6a2 − a4

1 − a4
+ sin2 δ

a2 + 1

a2 − 1

)

. (5.17)

Now we turn to the contribution from the background flux. Unlike the symmetric case,

the pullback of δC3 on the worldvolume is nonzero, then we will get a contribution from

δH. In fact, from

δCαβγ =
∑

I

3

16k
ǫαβγδs

I∇δY I , (5.18)

we get

δC234 = − 3

16k
sin3 ζ1 sin2 ζ2 sin ζ3

∑

I

sI∂ζ1Y
I , (5.19)

– 18 –



J
H
E
P
0
1
(
2
0
0
8
)
0
0
7

then

δC234 = − 3

16k
sin3 ζ0 sin2 ζ2 sin ζ3

∑

I

sI∂ζ0Y I . (5.20)

From

δH3 = −δC3, (5.21)

we get

δH234 =
3

16k
sin3 ζ0 sin2 ζ2 sin ζ3

∑

I

sI∂ζ0Y I . (5.22)

Recall that

H234 =
a

4(1 − a2)
sin3 ζ0 sin2 ζ2 sin ζ3, (5.23)

we have8

δH234 =
3(1 − a2)

4ak
H234

∑

I

sI∂ζ0Y I . (5.24)

From this we can easily get

δHH2 = 6g22g33g44H234 · 2δH234 = 12H234H
234 δH234

H234
, (5.25)

and

δH(HmnpH
npqHqrsH

rsm) = 12 · 4(H234H
234)2

δH234

H234
. (5.26)

Then

δH

(

1

12
H2 +

1

288
(H2)2 − 1

96
HmnpH

npqHqrsH
rsm

)

=
3a(1 + a4)

k(1 − a2)(1 + a2)2

∑

I

sI∂ζ0Y I . (5.27)

Putting all these together, we have,

δH(
√

detgmnK) =
√

detgmnδH

(K2

4

)

2

K = −
√

detgmn
3a

k(a2 + 1)

∑

I

sI∂ζ0Y I . (5.28)

Finally let us compute the variation of the Chern-Simions term. Recall that

Z6 = C6 −
1

2
C3 ∧ H3. (5.29)

In this case, δC6 = 0, so

δZ6 = −1

2
δC3 ∧ H3

= − 3ia

16k

sin3 ζ0 sin2 ζ2 sin ζ3 sin α sin2 δ

cos3 δ(1 + a2)

∑

I

sI∂ζ0Y I

dδ ∧ dα ∧ dβ ∧ dζ2 ∧ dζ3 ∧ dζ4. (5.30)

8Here H234 denotes Hζ2ζ3ζ4 .
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The total action of M5-brane is

S = SM5 − SCS = T5

∫

(⋆
1

2
K + iZ6), (5.31)

so we get

δS = T5

∫
((

1

2
δg

(

√

detgmnK
)

+
1

2

√

detgmnδH(K)

)

dδ ∧ dα ∧ dβ ∧ dζ2 ∧ dζ3 ∧ dζ4

−δZ6

)

=
3T5

8

∫

sin3 ζ0 sin2 ζ2 sin ζ3 sinα sin2 δ

16 cos3 δ

(−1 + 6a2 − a4

1 − a4
+ sin2 δ

a2 + 1

a2 − 1

)

×
∑

I

sIY Idδdαdβdζ2dζ3dζ4.

=
3T5

8

∫

sin3 ζ0 sin2 ζ2 sin ζ3 sinα sin2 δ

16 cos3 δ

(−1 + 6a2 − a4

1 − a4
+ sin2 δ

a2 + 1

a2 − 1

)

×
∑

k

skY kdδdαdβdζ2dζ3dζ4. (5.32)

Here we have performed the integration over the 3-sphere:9

∫

sin2 ζ2 sin ζ3

∑

I

sIY Idζ2dζ3dζ4 =
∑

k

skY k,0(ζ0). (5.33)

As before, using

G∆(~x′; ~x, y) ≃ c
y∆

L2∆
, y = r cos δ, (5.34)

and
∫ π

0
sin αdα

∫ 2π

0
dβ = 4π, (5.35)

we get

〈W (S, L)O∆(0)〉
〈W (S, L)〉 ∼ −3πT5

32

c

N I

∑

∆

r∆

L2∆

∫ π/2

0
sin3 ζ0 sin2 δ cos∆−3δ

(

a4 − 6a2 + 1

a4 − 1
+ sin2 δ

a2 + 1

a2 − 1

)

Y k,0(ζ0). (5.36)

Now we perform the integration over δ:

∫ π/2

0
sin2 δ cos∆−3 δdδ =

√
π

4

Γ(∆
2 − 1)

Γ(∆+1
2 )

, (5.37)

∫ π/2

0
sin4 δ cos∆−3 δdδ =

√
π

4

3

∆ + 1

Γ(∆
2 − 1)

Γ(∆+1
2 )

, (5.38)

9Here Y k,0 is the abbreviation of Y (k,0,0,0). For discussions on spherical harmonics, see, for example, [46].
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and have

〈W (S, L)O∆(0)〉
〈W (S, L)〉 ∼ ∓3π3/2T5

128

c

N I

∑

∆

r∆

L2∆
sin3 ζ0

(

− cos 2ζ0

sin ζ0
(5.39)

+
1

sin ζ0

3

2k + 1

)

Y k,0(ζ0)
Γ(k − 1)

Γ(k + 1/2)
,

after putting the explicit value of a.

The harmonic function can be written as

Y k,0(ζ0) = NkC
(3/2)
k (x), (5.40)

where x = cos ζ0, C
(3/2)
k (x) are Gegenbauer polynomials and

Nk =

[

π1/2k!(2k + 3)

23k+7(k + 1)(k + 2)Γ(k + 5/2)

]1/2

, (5.41)

is obtained from the normalization of Y k,0.

Therefore

〈W (S, L)O∆(0)〉
〈W (S, L)〉 ∼ ∓3π3/2T5

128

c

N I

∑

∆

r∆

L2∆
Y k,0(0) sin2 ζ0

((

− cos 2ζ0 (5.42)

+
3

2k + 1

) Nk

Y k,0(0)
C

(3/2)
k (cos ζ0)

)

Γ(k − 1)

Γ(k + 1/2)
.

From

Y k,0(0) = NkC
(3/2)
k (1), (5.43)

we have

〈W (S, L)O∆(0)〉
〈W (S, L)〉 ∼ ∓3π3/2T5

128

c

N I

∑

∆

r∆

L2∆
Y k,0(0)

1

C
(3/2)
k (1)

sin2 ζ0

×
(

−cos 2ζ0 +
3

2k + 1

)

C
(3/2)
k (cos ζ0)

Γ(k − 1)

Γ(k + 1/2)
. (5.44)

So the OPE coefficients is

cA,∆ ∼ ±2(3k−5)/2N1/2

π7/4

C
(3/2)
k (cos ζ0)

C
(3/2)
k (1)

sin2 ζ0

×
(

−cos 2ζ0 +
3

2k + 1

)

k + 1/2

k − 1

√

Γ(k)

Γ(k − 1/2)
. (5.45)

To compare with the membrane results, we take the ζ0 → 0 limit in which the S̃3 will

shrink. In this limit x → 1 and the OPE cooeficient is equal to

∓2(3k−5)/2N1/2

π7/4
(ζ0)2

√

Γ(k)

Γ(k − 1/2)
(5.46)
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The magnetic charge of string soliton solution is

QM =
1

Vol(S̃3)

∫

S̃3

H = −sin2 ζ0 cos ζ0

8l3p
, (5.47)

in the small ζ0 limit, we have

QM = −(ζ0)2

8l3p
= −πN(ζ0)2. (5.48)

Then the OPE coefficients can be written as

±2(3k−5)/2

π11/4
QM

√

Γ(k)

NΓ(k − 1/2)
. (5.49)

We can see that in this limit the OPE coefficients is proportional to QM and the k-

dependence and N -dependence of the coefficients in this limit is the same as the one in

eq. (2.41) computed using M2-brane.

6. Conclusion and discussions

In this paper we studied the OPE of spherical half-BPS Wilson surface operators using

their M5-brane description. We computed the OPE coefficients by studying the coupling

to the M5-branes of the supergravity modes. In this process, we first make clear that the

variation of the embedding and the 2-form gauge potential can be set to zero. Then we

calculated the response of the non-chiral action of M5-brane to the bulk supergravity fields.

Moreover, we had to investigate carefully the response of the Chern-Simons term in the

M5-brane action to the bulk gauge potential. In the symmetric case, the three form field

strength has no fluctuation and only the fluctuation of the dual 6-form gauge potential

gives the contribution. On the contrary, in the antisymmetric case, δH3 is non-zero while

δC6 = 0.

We also consider the membrane limit of our results. In this limit the S3 part of

the M5-brane worldvolume shrink. We find that the OPE coefficients is proportional to

QM which characterizes the rank of the representation. This is reminiscent of the results

for the expectation values of these Wilson surfaces in [32]. There it is found that the

expectation values is proportional to QM even before we take the membrane limit. We

compare our result in this membrane limit with the results obtained from the membrane

method [29]. We find that the N dependence are the same. We also find that for the

Wilson surface in symmetric representation, the dependence on the dimension of the local

operator is different, while in the antisymmetric case, the dependence is the same. This

may be related to the nontrivial dynamics of the branes in M-theory. We hope we can

come back to this point in the future.

Another subtle issue is the choice of the M5-brane action. Among the different pro-

posals for the M5-brane action, we chose the non-chiral action since there are no auxiliary

fields in this action. Although different choice of action gives equivalent equations of mo-

tion [37, 41], this does not guarantee that these actions give the same quantum dynamics.
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It will be interesting to compute the OPE coefficients using other actions of the M5-brane,

such as the PST action and compare the results obtained from different action. In [32],

the issue on choosing action also appear and make the discussions for the boundary terms

quite subtle.

At this stage, quite little is known in the field theory side. Some field theory studies

could be found in [47]: the conformal anomaly of abelian Wilson surface operator was cal-

culated in A1 field theory. It is very hard to consider the nonabelin Wilson surface in field

theory. It would be interesting to study the OPE of Wilson surface operators from field the-

ory calculation and compare the results with the ones obtained from M2-brane or M5-brane.

If we compactify the six-dimension (0, 2) SCFT on T 2 with supersymemtric boundary

conditions, we will obtain N = 4 supersymmetric Yang-Mills theory. If the Wilson sur-

face winds various 1-cycles of the T 2, it will give Wilson loop, ’t Hooft loop or Wilson-’t

Hooft loop [48, 49]. It is interesting to see if one can study this relation in the framework

AdS/CFT correspondence. The relation between Wilson surface in six-dimensional SCFT

and the surface operator in four-dimensional SYM is also a quite interesting subject [50 –

53].

Another interesting subject about the Wilson surfaces in higher dimensional represen-

tation is to compute the correlation function of two Wilson surfaces, one in the fundamental

representation and the other one in higher dimensional representation [54].
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A. The variation of C6 due to the SUGRA modes

In this appendix we compute δC6 due to the supergravity modes sI . Notice that for the

purpose of this paper, we can use the approximation eq. (2.36) freely here.

From

δCαβγ =
∑

I

3

16k
ǫαβγδs

I∇δY I , (A.1)

we get

δHµαβγ =
3

16k

∑

I

ǫαβγδ∇δY I∇µsI , (A.2)

and

δHαβγδ = − 3

16k

∑

I

ǫαβγδ∇ǫ∇ǫY IsI . (A.3)
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We notice that

∇ǫ∇ǫY I = −4k(k + 3)Y I , (A.4)

so we get

δHαβγδ =
3(k + 3)

4

∑

I

ǫαβγδY
IsI , (A.5)

considering

Hαβγδ = 6ǫαβγδ, (A.6)

δHαβγδ =
(k + 3)

8

∑

I

HαβγδY
IsI . (A.7)

Since H7 is the Hodge dual of H4:

(H7)m1···m7
=

√
g

4!
ǫ
n1···n4

m1···m7
Hn1···n4

, (A.8)

we get

(δH7)µ
1
···µ

6
α =

√
g

4!
4ǫ

α1α2α3µ
µ

1
···µ

6
α δHα1α2α3µ

=
3

16k
ǫµµ

1
···µ

6

∑

I

∇αY I∇µsI

≃ 3

8
yǫyµ

1
···µ

6

∑

I

sI∇αY I , (A.9)

and

(δH7)µ
1
···µ

7
=

√
g

4!
ǫ
α1···α4

µ
1
···µ

7
δHα1···α4

+
δ
√

g

4!
ǫ
α1···α4

µ
1
···µ

7
Hα1···α4

+

(√
g

4!
δgα1β

1gα2β
2gα3β

3gα4β
4εβ

1
···β

4
µ

1
···µ

7
δHα1···α4

+ three other terms from δgαiβi , i = 2, 3, 4
)

. (A.10)

By using

δ
√

g =
1

2

√
ggmnδgmn =

1

2

√
g(gαβδgαβ + gµνδgµν)

=
1

4

√
gs, (A.11)

and

δgαβ = −1

4
gαβs, (A.12)

we get

(δH7)µ
1
···µ

7
=

k − 3

8
(H7)µ

1
···µ

7

∑

I

sIY I (A.13)

From eq. (2.7) and δ(C3 ∧ H4) = 0, we get dδC6 = δH7. We can choose

δC6 = −3

8
C6

∑

I

sIY I , (A.14)

which lead to the above δH7.
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